LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
B.Sc. DEGREE EXAMINATION – MATHEMATICS			
FOURTH SEMESTER – APRIL 2019			
16/17UMT4MC01- ABSTRACT ALGEBRA			
Date: 03-04-2019 Time: 09:00-12:00	Dept. No.	Max. : 100 Marks	
Answer All Questions:	Part A	(10 x 2 = 20)	
Answei An Quesuons.		$(10 \times 2 - 20)$	
1. For all $a, b \in G$, show that $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.			
2. If G is a group with $o(G) = 12$, find all the possible orders of the elements of G.			
3. Show that every subgroup of an abelian group is normal.			
4. Define quotient group.			
5. If <i>G</i> is a group of real numbers under addition and \overline{G} is a group of real numbers under multiplication and $W: G \to \overline{G}$ is defined as $W(x) = 2^x$, $x \in G$, check whether <i>w</i> is a homomorphism or not.			
6. Write the cycles of $ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix} $			
7. What is a division ring?			
8. When is an integral domain said to be of characteristic zero?			
9. If <i>U</i> is an ideal of <i>R</i> and if $1 \in U$, show that $R = U$.			
10. Define Euclidean ring.			
Answer Any Five Questions:	Part B	(5x8 = 40)	
11.State and prove the necessary and sufficient condition for a nonempty subset of a group to be a subgroup of the group.			
12. If <i>G</i> is a group, show that for all $a \in G$, $H_a = \{x \in G \mid a \equiv x \mod H\}$.			
13. If <i>H</i> and <i>K</i> are subgroups of a group G, prove that <i>HK</i> is a subgroup of <i>G</i> if and only if $HK = KH$.			
14. Show that the subgroup N of a group G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.			

15. If w is a homomorphism of a group G into another group \overline{G} with kernel K, p that K is a normal subgroup of G.	rove		
16. Prove that the homomorphism of a ring R into a ring R' is a isomorphism if and only if I() = $\{0\}$.			
17. If R is a commutative ring with unit element whose only ideals are (0) and R itself, prove that R is a field.			
18. Let A be an ideal of a Euclidean ring R. Prove that there exists an element $a_0 \in A$ such that A consists exactly of all a_0x as x ranges over R.			
Part C Answer any Two Questions:	(2x20 = 40)		
19. State and prove Lagrange's Theorem with necessary lemmas.	(20)		
20. (a) If w is a homomorphism of a group G onto a group \overline{G} with kernel K, then prove that $G/K \cong \overline{G}$.			
(b) State and prove Cayley's theorem.	(10+10)		
21. (a)Prove that the set of integers mod 7 under addition and multiplication mod 7 is a ring.			
(b)Prove that a finite integral domain is a field.	(12+8)		
22. (a) If U is an ideal of a ring R, prove that R/U is a ring and is a homomorphic image of R.			
(b) State and prove unique factorization theorem.	(10+10)		
